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We calculate the temperature-dependent condensate density �0�T� of interacting bosons in three dimensions
using the functional renormalization group �FRG�. From the numerical solution of suitably truncated FRG flow
equations for the irreducible vertices we obtain �0�T� for arbitrary temperatures. We carefully extrapolate our
numerical results to the critical point and determine the order parameter exponent ��0.32 in reasonable
agreement with the expected value 0.345 associated with the XY-universality class. We also calculate the
condensate density in two dimensions at zero temperature using a truncation of the FRG flow equations based
on the derivative expansion including cubic and quartic terms in the expansion of the effective potential in
powers of the density. As compared with the widely used quadratic approximation for the effective potential,
the coupling constants associated with the cubic and quartic terms lead to small corrections of the condensate
density.
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I. INTRODUCTION

The condensed phase of interacting bosons is often stud-
ied using Bogoliubov’s celebrated mean-field approximation
�1�. However, if one tries to go beyond the Bogoliubov ap-
proximation and includes fluctuation corrections perturba-
tively, some terms in the perturbation series for the single-
particle Green’s function diverge. The upper critical
dimension for these divergencies is D=3 at zero temperature
and D=4 at finite temperature. In the critical dimension the
divergencies are logarithmic �2�, whereas in lower dimen-
sions one encounters even stronger power-law singularities.
Physically, these divergencies arise due to the coupling of
transverse fluctuations to longitudinal ones in the condensed
phase; the gapless nature of the transverse fluctuations asso-
ciated with the Goldstone modes then gives rise to singulari-
ties in the perturbation series of longitudinal correlation
functions �3–8�, which have to be resummed to all orders in
perturbation theory to obtain meaningful results. The con-
trolled calculation of physical properties of interacting
bosons requires, therefore, nonperturbative methods.

Recently several authors have studied interacting bosons
by means of the renormalization group �9–14�, which is an
efficient method to resum the perturbation series and remove
the singularities encountered in finite order perturbation
theory. While most calculations so far have focused on prop-
erties of the superfluid ground state �9–11� or on the single-
particle spectral function at zero temperature �12,13�, Flo-
erchinger and Wetterich �14� have used the nonperturbative
functional renormalization group �FRG� to calculate thermo-
dynamic observables of the interacting Bose gas in three di-
mensions. They used a truncation of the formally exact FRG
flow equation for the generating functional � of the irreduc-
ible vertices �15� based on the derivative expansion �16� re-
taining field gradients and density fluctuations in the expan-
sion of the effective potential up to second order. In Sec. II
we shall present an alternative derivation of the resulting
finite temperature flow equations based on the vertex expan-
sion �17�. In contrast to Ref. �14�, we shall carefully analyze

the temperature dependence of the condensate density �0�T�
in the critical regime and extract the order parameter expo-
nent � from the numerical solution of our truncated FRG
flow equations. Our result ��0.32 is quite close to the ex-
pected value ��0.345 of the three-dimensional
XY-universality class �18�. We therefore conclude that our
simple truncation of the vertex expansion yields quantita-
tively accurate results for the condensate density for all tem-
peratures including the critical regime.

In order to estimate the effect of higher order many-body
interactions, we shall in Sec. III go back to the derivative
expansion approach �14,16� and calculate the condensate
density at vanishing temperature within a truncation to sec-
ond order in the derivatives and to fourth order in the expan-
sion of the effective potential U��� in powers of density fluc-
tuations �−�0,

U��� � U�0� + �
k=2

4
U�k�

k!
�� − �0�k. �1�

We find that the coupling constants U�3� and U�4� flow to
rather large values, which indicates that the true effective
potential U��� is nonanalytic at �=�0. Nevertheless, if one
rescales the coupling constants U�3� and U�4� with the proper
power of the running cutoff � they flow to zero and hence
appear to be irrelevant in the RG sense. As a result, the
inclusion of U�3� and U�4�, which describe three- and four-
body interactions, has only a rather small effect on the nu-
merical value of the condensate density.

II. FRG APPROACH TO THE CONDENSED BOSE GAS

A. Vertex expansion of the FRG flow equation

The starting point of our investigation is the following
Euclidean action describing bosons with mass m subject to a
repulsive contact interaction u0:
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S��̄,�� =� dDr�
0

�

d���̄�r,��	�� −
�2

2m
− �
��r,��

+
u0

2
„�̄�r,����r,��…2� , �2�

where the chemical potential � and the inverse temperature
�=1 /T are fixed. The spatial integrals should be regularized
by means of a short-distance cutoff �0

−1, which is related to
the finite extent of the interaction or, for hard core bosons, to
the size of the particles. Model �2� depends on three dimen-
sionless parameters,

�̃ =
2m�

�0
2 , �3a�

T̃ = 2�
2mT

�0
2 , �3b�

ũ0 = 2mu0�0
D−2, �3c�

where at this point we do not specify the dimensionality D of
the system, and the factor of 2� in the definition of the

dimensionless temperature T̃ is introduced for later conve-
nience. We focus on the condensed phase, where the global
U�1� symmetry of action �2� is spontaneously broken and the
field � has a finite expectation value 	0= ���r ,��, which by

translational invariance is independent of space r and imagi-
nary time �. Without loss of generality, we choose 	0 to be
real.

To derive formally exact FRG flow equations for the one-
particle irreducible vertices of our model, we add a cutoff-
dependent regulator function R��k� to the inverse free propa-
gator in the Gaussian part of action �2�. In momentum-
frequency space the inverse free propagator is then

G0,�
−1 �K� = i
 − �k + � − R��k� , �4�

where i
 is a bosonic Matsubara frequency, �k=k2 /2m is the
free dispersion in momentum space, and K= �k , i
� is a col-
lective label. The regulator function R��k� should satisfy

R��k� � �0 for � → 0,

� for � → � ,
� �5�

so that the infrared cutoff � suppresses long-wavelength
fluctuations and we recover our original model for �→0.
For convenience we use the Litim regulator �19�

R��k� = �1 − k,0�Z�
−1��� − �k����2 − k2� , �6�

where the dimensionless wave-function renormalization fac-
tor Z� is defined in Eq. �25� below. The cutoff-dependent
irreducible vertices ��

�n,m��K1� , . . . ,Kn� ;Km , . . . ,K1� in the con-
densed phase are defined via the functional Taylor expansion
of the corresponding generating functional �20� in powers of
the fluctuations 	K=	K−K,0	0,

���	̄,	� = �
n,m=0

�
1

n ! m!
�

K1�
¯�

Kn�
�

Km

¯�
K1

K1�+¯+Kn�,Km+¯+K1
��

�n,m��K1�, . . . ,Kn�;Km, . . . ,K1�

�	̄K1�
. . . 	̄Kn�

	Km
. . . 	K1

. �7�

The derivative of the functional ���	̄ ,	� with respect to the
infrared cutoff � can be expressed in closed form in terms of
a deceptively simple FRG flow equation �15–17�, which is
equivalent to an infinite hierarchy of integrodifferential
equations for the cutoff-dependent vertices
��

�n,m��K1� , . . . ,Kn� ;Km , . . . ,K1�. Following Refs. �21–23�, we
fix the flowing order parameter 	�

0 = ���r ,�� by demanding
that the vertices ��

�1,0� and ��
�0,1� with a single external leg

should vanish identically for any value of the cutoff �.
Therefore, it is convenient to consider the chemical potential
� as part of the interaction term �20,21�; i.e., we include it
into the effective action ���	̄ ,	�.

We are interested in the temperature dependent order pa-
rameter 	�

0=lim�→0 	�
0 , which determines the condensate

density via ��
0= �	�

0�2. The exact FRG flow equation for the
flowing order parameter 	�

0 depends on the flowing normal
and anomalous self-energies �21�,

��
�1,1��K,K� = ��

N�K� − � , �8�

��
�0,2��K,− K� = ��

�2,0��− K,K� = ��
A�K� , �9�

and on the four types of vertices with three external legs,
��

�3,0�, ��
�2,1�, ��

�1,2�, and ��
�0,3�. To calculate the order param-

eter we therefore need the flowing self-energies and the
flowing three-legged vertices, whose flow equations depend
again on higher order vertices with four and more external
legs. To obtain a closed system of FRG flow equations, we
shall use here the truncation proposed in Ref. �12�, which
amounts to the following parametrization of the nonzero ver-
tices with three and four external legs:

��
�2,1��K1�,K2�;K1� = 	�

0 �u��K1�� + u��K2��� , �10�

��
�1,2��K1�;K2,K1� = 	�

0 �u��K1� + u��K2�� , �11�

��
�2,2��K1�,K2�;K2,K1� = u��K1� − K1� + u��K2� − K1� . �12�

The system of flow equations for the order parameter and the
self-energies is closed by demanding that the momentum-
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and frequency-dependent function u��K� is related to the
flowing self-energies via

��
N�K� = � + ���K� + ��

0 u��K� , �13a�

��
A�K� = ��

0 u��K� , �13b�

where ��
0 = �	�

0 �2 is the flowing condensate density and
���K� is another K-dependent function satisfying ���0�=0.
Equations �10�–�12� relate the vertices with three and four
external legs to the normal and anomalous components of the
irreducible self-energy and thus close the FRG flow equa-
tions for the order parameter and the self-energies. Our pa-
rametrization of the self-energies given in Eqs. �13a� and
�13b� is motivated by the pioneering insights gained by Ne-
pomnyashchy and Nepomnyashchy �2�, implying that only
the contribution to the self-energy contained in the function
u��K� exhibits a nonanalytic K dependence for �→0, while
the contribution ���K� remains analytic. As noted in Ref.
�12�, the above truncation satisfies the Hugenholtz-Pines re-
lation �24�

��
N�0� − ��

A�0� = � , �14�

as well as the Nepomnyashchy identity �2�

lim
�→0

��
A�0� = 0, �15�

which holds at finite temperature for D�4 and at zero tem-
perature for D�3, since in these cases

lim
�→0

u��0� = 0. �16�

The truncation �Eqs. �10�–�12�� amounts to the following
approximation for the generating functional ���	̄ ,	� de-
fined in Eq. �7�:

���	̄,	� = ��
�0� + �

K

	̄K���K�	K +
1

2
�

K

�Ku��K��−K,

�17�

where �K=�Q	̄Q	Q+K−K,0��
0 are the Fourier components

of the fluctuating density ��X�−��
0 �25�, and ��

�0� is an inter-
action correction to the grand canonical potential in units of
the temperature. As shown in Ref. �12�, for �→0 the func-
tion u��K� develops a nonanalytic dependence on K, so that
the corresponding effective potential in real space and imagi-
nary time is nonlocal.

To further simplify the FRG flow equations, we shall re-
place on the right-hand sides of the flow equations,

u��K� → u��0� = u�. �18�

Within this truncation, the FRG flow equation for the con-
densate density ��

0 = �	�
0 �2 reduces to

����
0 = �

Q

�2Ġ�
N�Q� + Ġ�

A�Q�� , �19�

while the normal and anomalous components of the self-
energy satisfy �12�

����
N�K� = 2u��

Q

�Ġ�
N�Q� + Ġ�

A�Q�� − 4u�
2 ��

0�
Q

�Ġ�
N�Q�

��G�
N�Q + K� + G�

N�Q − K� + G�
N�− Q + K�

+ 2G�
A�Q − K�� + 2Ġ�

A�Q��G�
A�Q + K�

+ G�
N�Q + K��� , �20�

����
A�K� = 2u��

Q

Ġ�
N�Q� − 4u�

2 ��
0�

Q

�Ġ�
N�Q��G�

N�Q + K�

+ G�
N�Q − K� + G�

A�Q + K� + G�
A�Q − K�� + Ġ�

A�Q�

��G�
N�Q + K� + G�

N�Q − K� + 3G�
A�Q + K��� . �21�

Here the single-scale propagators Ġ�
N�K� and Ġ�

A�K� are de-
fined via the matrix equation

	 Ġ�
N�K� Ġ�

A�K�

Ġ�
A�K�� Ġ�

N�− K�

 = − G��K����G0,�

−1 �K��G��K� ,

�22�

where G�
−1�K�=G0,�

−1 �K�−���K�, and

G0,��K� = 	G0,��K� 0

0 G0,��− K�

 , �23�

���K� = 	 ��
N�K� ��

A�K�
��

A�K�� ��
N�− K�


 . �24�

B. Low-energy truncation and results

Following Ref. �12� we expand the analytic part ���K� of
the self-energy in powers of momenta and frequencies up to
quadratic order,

���K� � i
�1 − Y�� + �k�Z�
−1 − 1� − �i
�2V�. �25�

Note that at the initial scale Y�0
=Z�0

=1 and V�0
=0, so that

��0
�K� vanishes. While at zero temperature it is essential to

retain the couplings Y� and V� associated with the frequency
dependence of the self-energy, these couplings are irrelevant
at the critical fixed point associated with Bose-Einstein con-
densation, which is a classical phase transition. Since in this
section we are interested in the finite temperature behavior of
the condensate density, for our purpose it is sufficient to
retain only the Z� term in Eq. �25�,

���K� � ���k,i
 = 0� � �k�Z�
−1 − 1� , �26�

and we further approximate

u��K� � u� = r�/��
0 . �27�

The normal and anomalous propagators are then simply

G�
N�K� =

− i
 − Z�
−1�k − r� + R��k�


2 − r�
2 + �Z�

−1�k + r� − R��k��2 , �28�
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G�
A�K� =

r�


2 − r�
2 + �Z�

−1�k + r� − R��k��2 , �29�

while the corresponding single-scale propagators are

Ġ�
N�K� = − ���R��k��

r�
2 + �− i
 − Z�

−1�k − r� + R��k��2

�
2 − r�
2 + �Z�

−1�k + r� − R��k��2�2 ,

�30�

Ġ�
A�K� = − ���R��k��

2r��R��k� − Z�
−1�k − r��

�
2 − r�
2 + �Z�

−1�k + r� − R��k��2�2 .

�31�

Substituting these expressions into Eqs. �19�–�21� and using
the Litim regulator �6�, the momentum integrations and fre-
quency summations appearing in the FRG flow equations for
the three independent couplings ��

0 , u�, and Z� at finite tem-
perature can all be performed analytically. In D dimensions
the final result can be written in the following form:

����̃�
0 =

2KD

�D
	 �

�0

D+2	1 −

��

D + 2

Z�

−1��̃3S0,2��̃Ẽ��P�
�2�

− �̃S2,2��̃Ẽ��� , �32�

���ũ� = −
8KD

�D
	 �

�0

D+2	1 −

��

D + 2

ũ�

2 Z�
−1��̃5S0,3��̃Ẽ��P�

�3�

− �̃3S2,3��̃Ẽ��P�
�1�� , �33�

���Z� = ��Z�, �34�

where the flowing anomalous dimension is

�� =
4KD

�D
	 �

�0

D+2

�̃�
0 ũ�

2 Z�
−1�̃3S0,2��̃Ẽ�� . �35�

Here KD=21−D�−D/2 /��D /2� is the surface of the
D-dimensional unit sphere divided by �2��D, the dimension-

less inverse temperature �̃=1 / T̃ is defined via Eq. �3b�, and
we have introduced dimensionless quantities

�̃�
0 = ��

0 �0
−D, �36a�

ũ� = 2mu��0
D−2, �36b�

r̃� = �̃�
0 ũ� = 2m��

0 u�/�0
2, �36c�

Ẽ� = ��̃���̃� + r̃�� , �36d�

�̃� = Z�
−1�2/�0

2, �36e�

as well as dimensionless coefficients,

P�
�1� =

7

4
r̃� +

11

4
�̃�, �37a�

P�
�2� = r̃�

2 + r̃��̃� + �̃�
2 , �37b�

P�
�3� = r̃�

3 +
3

2
r̃�

2 �̃� +
3

4
r̃��̃�

2 +
5

4
�̃�

3 . �37c�

Finally, the dimensionless functions Sk,l�x� are defined in
terms of the bosonic Matsubara sums,

Sk,l�x� = �
n=−�

�
nk

�n2 + x2�l , �38�

which can be expressed in terms of the Bose function and its
derivatives.

The system of first-order differential equations given by
Eqs. �32�–�34� can easily be solved numerically. It is conve-
nient to consider quantities as functions of the logarithmic
flow parameter l=−ln�� /�0�, renaming �̃�0e−l

0 → �̃l
0, and

analogously for the other couplings. In Fig. 1 we show the
typical RG flow of the couplings �̃l

0, ũl, and the flowing
anomalous dimension �l for three different temperatures
�above, below, and at the critical temperature�.

As expected, only at the critical temperature the flowing
anomalous dimension has a finite limit �which can be iden-
tified with the critical exponent ��, while for T�Tc the con-
densate density approaches a nonzero value �̃�

0. The tempera-
ture dependence of the corresponding order parameter 	̃�

0

=��̃�
0 is shown in Fig. 2 for three different values of the

interaction strength. In order to extract the order parameter
exponent � from our numerical results shown in Fig. 2, one

0 2 4 6
0

0.5

1

l

ρ̃
0 l
/
ρ̃
0 0

0 2 4 6
0

0.5

1

l

ũ
l/

ũ
0

0 2 4 6
0

0.1

0.2

0.3

0.4

l

η
l

T̃ = 43

T̃ = 45.1318

T̃ = 47

FIG. 1. �Color online� Typical FRG flow of the condensate den-
sity, the anomalous dimension and the dimensionless interaction ũl

for D=3 and �̃= ũ0=1. Solid line: critical temperature �T̃c

=45.131 8 for our choice of parameters�; dashed line: T̃=47� T̃c;

dotted line: T̃=43� T̃c.
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should carefully fit the curves in a sufficiently small tempera-
ture interval below the critical temperature to a power law,

	̃�
0 � �T̃c − T̃��. �39�

Due to the lack of a priori knowledge about the proper in-
terval for the power-law fit, and due to the finite accuracy of
the numerical data, it is nontrivial to extract the critical ex-
ponent � from the numerical solutions of the FRG flow
equations shown in Fig. 1. In fact, in a recent FRG calcula-
tion �14� of the temperature-dependent condensate density
the critical exponent � was not determined apparently due to
a lack of numerical accuracy. Here we present an extrapola-
tion procedure which allows us to obtain the critical expo-
nent � with high accuracy. The crucial point is that one
should use a series of increasingly narrow intervals close to
the critical point for the fitting procedure. Specifically, we
use intervals of the form

Iz = ��1 − 2−z�T̃c,T̃c� , �40�

which are parametrized in terms of the zoom factor z. For
increasing values of z we fit the data in the corresponding
temperature interval Iz to power law �39� and extract ��z�.
This procedure is illustrated in Fig. 3.

We then plot our results for ��z� as a function of z and
extrapolate for z→�. As shown in Fig. 4, the dependence of
��z� on the zoom factor z can be described by

��z� � ��1 − e−��z+��� , �41�

with some nonuniversal numbers � and �.
The critical exponent � can then be identified with

�=limz→� ��z�. Given the simplicity of our truncation
our final result ��0.32 is in reasonable agreement with
the accepted value ��0.345 of the three-dimensional
XY-universality class �18�. We have checked that our ex-
trapolated result for � is independent of the various nonuni-
versal parameters of our model such as �0 or the value of ũ0.
We therefore believe that, in spite of its simplicity, our trun-
cation of the vertex expansion yields accurate results for the

condensate density for all temperatures. We can estimate an-
other critical exponent by identifying �=liml→� �l with the
anomalous dimension. If we fine tune the dimensionless tem-

perature to its critical value T̃= T̃c �as shown in Fig. 1� �l
converges toward ��0.059 independently of the chosen
nonuniversal parameters. This value is of the correct order of
magnitude. An improved estimate for � would be obtained
only if higher order terms of the local density interaction
were kept �26�.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T̃

φ̃
0 ∗/

φ̃
0 0

ũ0 = 3
ũ0 = 4
ũ0 = 5

FIG. 2. �Color online� Temperature dependence of the order
parameter 	̃�

0=��̃�
0 in three dimensions for �̃=1 and three different

values of the dimensionless bare interaction ũ0 defined in Eq. �3c�.

FIG. 3. �Color online� Iterative procedure to extract the order
parameter exponent � from the FRG results. We fit our numerical
FRG results in a series of intervals Iz given by Eq. �40� to power
law �39� and thus determine the critical exponent ��z� for a given
value of the zoom factor z. The z dependence of ��z� is then ex-
trapolated for z→� as shown in Fig. 4.

5 10 15 20
0.29

0.3

0.31

0.32

zoom factor z

β
(z

)

β = 0.32

fit function:
β(z) = (1-e-α(z+γ))β

FIG. 4. �Color online� The dependence of ��z� on the zoom
factor z can be described by the indicated fit function �see also Eq.
�41�� with �=0.1945 and �=8.545. The data are based on the nu-
merical solution of the FRG flow equations for ũ0= �̃=1.
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III. DERIVATIVE EXPANSION WITH QUARTIC
EFFECTIVE POTENTIAL

The truncation of the vertex expansion used in the previ-
ous section is equivalent to approximating the generating
functional ���	̄ ,	� of the irreducible vertices by Eq. �17�. A
weak point of this truncation is that it neglects many-body
interactions involving more than two particles encoded in the
irreducible vertices with more than four external legs. Within
the framework of the vertex expansion it is rather difficult to
take these vertices into account. In this section we shall
therefore use the derivative expansion �16� with cubic and
quartic terms in the effective potential to estimate the effect
of higher order many-body interactions. For simplicity we
consider in this section only the quantum renormalization of
the condensate density at vanishing temperature.

If we approximate u��K��u��0��u� in Eq. �17� and use
the low-energy expansion �25� for the analytic part ��K� of
the self-energy, then our truncated vertex expansion of Sec.
II B amounts to the following approximation for the gener-
ating functional of the irreducible vertices:

���	̄,	� =� dDr�
0

�

d��U�„��r,��…

+ �1 − Y��	̄�r,����	�r,��

+ �Z�
−1 − 1�

��	�r,���2

2m
+ V����	�r,���2� ,

�42�

where ��r ,��= �	�r ,���2, and we have written the local effec-
tive potential in the form

U���� = U�
�0� +

u�

2
�� − ��

0 �2, �43�

with U�
�0�=��

�0� / ��V� and where V is the volume of the sys-
tem. Note that at the initial RG scale we have Y�0

=Z�0
=1

and V�0
=U�0

�0�=0, so that ��0
�	̄ ,	� correctly reduces to the

interaction part of the bare action minus the chemical poten-
tial term �20�.

To investigate the effect of higher order many-body inter-
actions, we now generalize the above ansatz by replacing the
effective potential by a fourth-order polynomial in the den-
sity

U���� = U�
�0� +

U�
�2�

2!
�� − ��

0 �2 +
U�

�3�

3!
�� − ��

0 �3 +
U�

�4�

4!
�� − ��

0 �4.

�44�

In fact, for the truncated generating functional ���	̄ ,	� of
form �42� with an arbitrary local effective potential U����
the exact FRG flow equation �15,16� implies the following
partial differential equation for the effective potential �14�:

��U���� =
KD

D
	1 −

��

D + 2

 �D+1

2mZ�
�

−�

� d


2�

�
�U���� + U���� + V�
2

��U���� + U���� + V�
2�2 − ��U�����2 + Y�
2 
2 .

�45�

At finite temperature, the frequency integral should be re-
placed by a bosonic Matsubara sum, � d


2� →T�
. To obtain
an approximate solution of the partial differential Eq. �45�,
we expand U���� in powers of �−��

0 . The flowing conden-
sate density ��

0 is then determined by

� �U����
��

�
�

�
0

= 0, �46�

and the expansion coefficients are

U�
�0� = U����

0 �, U�
�k� = � �kU����

��k �
�

�
0

. �47�

Taking derivatives of Eq. �45�, we obtain the flow equations
for the condensate density and expansion coefficients,

����
0 = −

1

U�
�2�

�

��
���U�������

�
0 , �48�

��U�
�k� = � �k

��k ���U����� −
U�

�k+1�

U�
�2�

�

��
���U������

�
�
0

.

�49�

The flow of the couplings Z�, Y�, and V� related to the
single-particle Green’s function can be derived by inserting
our ansatz �42� into the exact FRG flow equation for
���	̄ ,	� and comparing terms with the same number of gra-
dients on both sides �15,16�. If we retain only the quadratic
coupling U�

�2��u� and set Y�=1 and V�=0 we recover flow
equations �32�–�35� obtained in Sec. II within the vertex ex-
pansion. If we retain in addition the cubic and quartic cou-
plings U�

�3� and U�
�4� the resulting system of equations is

lather lengthy. In this work we do not give these equations
explicitly because their derivation is straightforward and they
can only be analyzed numerically anyway; technical details
can be found in Ref. �27�. Note that the couplings U�

�k� and
V� are not dimensionless; for our numerical analysis it is
convenient to work with the corresponding dimensionless
couplings

Ũ�
�k� = 2mU�

�k��0
D�k−1�−2, Ṽ� =

�0
2V�

2m
. �50�

For simplicity, we have explicitly solved the coupled flow

equations for the seven dimensionless couplings Ũ�
�2�, Ũ�

�3�,

Ũ�
�4�, �̃�

0 , Z�, Y�, and Ṽ� only at zero temperature. The typi-

cal RG flow for the coupling constants Ũ�
�2�, Ũ�

�3�, and Ũ�
�4� in

two dimensions is shown in Fig. 5. Obviously, during the RG

flow the cubic and quartic couplings Ũ�
�3� and Ũ�

�4� become

orders of magnitude larger than the quadratic coupling Ũ�
�2�.
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The behavior shown in Fig. 5 suggests that the true form
of the effective potential cannot be approximated by a low
order polynomial and might be traced to a nonanalyticity of
U��� at �=�0. This is also the case in three dimensions
where a similar calculation �not shown here� leads to a di-

vergence of both coefficients Ũ�
�3� and Ũ�

�4� for �→0. Nev-
ertheless, for the calculation of physical quantities like �0 it
can still be reasonable to work with a polynomial approxi-
mation of U���, because the influence of the higher order
terms is controlled by the IR-rescaled coupling constants

Ũ�
�k��� /�0�D�k−1�−2. As shown in Fig. 6 these couplings are

nondivergent and in fact, for both D=2 and D=3, flow to
zero in the IR limit. The higher order terms of the density
interaction can thus be regarded as irrelevant in the RG
sense. This is reflected also by the fact that the large values

of Ũ�
�3� and Ũ�

�4� �shown in Fig. 5� lead only to a small cor-
rection for the condensate density as shown in Fig. 7. Inter-
estingly, the inclusion of cubic and quartic terms in the ex-
pansion of the effective potential renormalize the condensate
density to larger values, so that the quadratic approximation
overestimates the effect of fluctuations. It would be interest-
ing to determine the true form of the effective potential in

two and three dimensions by directly solving partial differ-
ential equation �45�, which is, however, beyond the scope of
this work.

IV. SUMMARY AND OUTLOOK

In summary, we have used two different truncation strat-
egies for the formally exact FRG flow equation for the gen-
erating functional of the irreducible vertices to calculate the
condensate density of the interacting Bose gas. Our first
strategy presented in Sec. II is based on the truncated vertex
expansion recently proposed in Ref. �12�. We have further
simplified this truncation at finite temperature to obtain a
closed system of flow equations for the condensate density,
the effective interaction, and the wave-function renormaliza-
tion factor at finite temperature. These flow equations are
equivalent to the flow equations recently derived by Floerch-
inger and Wetterich within the derivative expansion �14�.
From the numerical solution of these flow equations we have
obtained a quantitatively accurate description of the critical
regime. We have also developed an extrapolation procedure
to extract the order parameter exponent � with high accuracy
and moderate computational effort from the numerical solu-
tion of the FRG flow equations.

In order to estimate the renormalization of the condensate
density by three-body and four-body interactions which are
not included in our truncated vertex expansion of Sec. II, we
have used in Sec. III the truncated derivative expansion in
combination with a polynomial approximation for the effec-
tive potential and derived appropriate FRG flow equations at
zero temperature. We have shown that the RG flow drives the

cubic and quartic coefficients Ũ�
�3� and Ũ�

�4� in the expansion
of the effective potential U���� to rather large values. This
indicates that a low order polynomial approximation is not
appropriate to describe the true form of the effective poten-
tial in the condensed phase. Although the inclusion of the

coefficients Ũ�
�3� and Ũ�

�4� leads only to a small positive cor-
rection of the condensate density, other physical observables
might be more strongly affected by the three- and four-body
interactions described by these couplings.
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FIG. 5. �Color online� RG flow of the dimensionless couplings

Ũ�
�2�, Ũ�

�3�, and Ũ�
�4� defined in Eq. �50� for ũ0=3, �̃=1, D=2, and

T=0.
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�4��� /�0�3D−2

for ũ0=3, �̃=1 in two dimensions.
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By using both the vertex expansion and the derivative
expansion, we have clearly established the relation between
these approximation strategies and have illustrated their ad-
vantages. In this work we have focused on the condensate
density, because it appears naturally as one of the flowing
couplings in the FRG flow equations. Our work can be ex-
tended in several directions: first of all, by keeping track of
the field-independent part ��

�0� of the generating functional in
Eq. �17� �which can be identified with the interaction correc-
tion to the grand canonical potential per unit volume� one
can also obtain the FRG flow of any thermodynamic observ-
able of interest �14�. In the critical regime our numerical
extrapolation procedure outlined in Sec. II should again be

useful to obtain quantitatively accurate results for other criti-
cal exponents. It would also be interesting to generalize the
vertex expansion approach developed in Ref. �12� to finite
temperatures and calculate the single-particle spectral func-
tion in the critical regime.
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